A Convenient Method for the Stereoselective Preparation of trans-2-Hydroxymethyltetrahydrofurans by the Oxidative Cyclization of 5-Hydroxy-1-alkenes with Molecular Oxygen Catalyzed by Cobalt(II) Complex

Satoshi INOKI and Teruaki MUKAIYAMA<sup>†</sup>
Basic Research Laboratories for Organic Synthesis,
Mitsui Petrochemical Industries, Ltd.,
Nagaura, Sodegaura-machi, Kimitsu-gun, Chiba 299-02

In the presence of a catalytic amount of bis(1-morpholino-carbamoyl-4,4-dimethyl-1,3-pentanedionato)cobalt(II), various 5-hydroxy-1-alkenes are converted to the corresponding 2-hydroxymethyl-tetrahydrofurans in good yields with extremely high trans selectivities by the oxidative cyclization with molecular oxygen. The yields of cyclization products are improved by addition of hydroperoxide.

Derivatives of 2-hydroxymethyltetrahydrofuran are one of the useful intermediates for the synthesis of natural products and several preparative methods have been reported. For example, 2-hydroxymethyl-5-methyltetrahydrofuran ( $\frac{4}{4}$ ) was produced as a mixture of cis and trans isomers (ratio=1:1) by oxidative cyclization with m-CPBA<sup>1</sup>) or by oxymercuration reaction<sup>2</sup>) of 5-hydroxy-1-hexene. Also,  $\frac{4}{4}$  was obtained by oxymercuration reaction of 5,6-epoxy-1-hexene.  $\frac{3}{4}$ , However, it was shown there that one isomer of  $\frac{4}{4}$  could not be obtained stereoselectively.

Previously, we have reported "oxidation-reduction hydration" of olefins with  $0_2$  catalyzed by bis(1,3-diketonato)cobalt(II) in 2-propanol. In the course of our continuing study, it was found that 5-hydroxy-5-phenyl-1-pentene (1b) was oxidized with  $0_2$  in the presence of bis(trifluoroacetylacetonato)cobalt(II) (Co(tfa)<sub>2</sub>) under above hydration conditions to afford cyclization products, 2-hydroxymethyl-5-phenyltetrahydrofuran (4b) and 2-methyl-5-phenyltetrahydrofuran (5b) in 21% and 24% yields, respectively (Scheme 1). In addition, it is interesting to note that 4b and 5b were obtained with extremely high trans selectivities (>99%). In this communication, we would like to describe the stereoselective preparation of trans-2-hydroxymethyltetrahydrofurans by oxidative cyclization of 5-hydroxy-1-alkenes catalyzed by bis(1,3-diketonato)cobalt(II).

First, the effect of the reaction temperature and that of structure of ligand

<sup>†</sup>Address: Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162.

of Co(II) complexes on the formation of 2-hydroxymethyltetahydrofuran  $(\underline{4b})$  was examined by taking the oxidative cyclization of 5-hydroxy-5-phenyl-1-pentene  $(\underline{1b})$  as a model reaction. The results are summarized in Table 1.

Table 1. Cyclization of 5-Hydroxy-5-phenyl-1-pentenea)

$$\begin{array}{c}
OH \\
\hline
O_2, Co(II) complex \\
\hline
MS4A, 2-propanol
\end{array}$$

$$\begin{array}{c}
OH \\
\hline
OH
\end{array}$$

| Entry | Co(II)                                               | Temperature /°C | Additiv |                     | Time<br>/h | Yield<br>4bf) | /%b)<br>5bf) |
|-------|------------------------------------------------------|-----------------|---------|---------------------|------------|---------------|--------------|
| 1     | Co(tfa) <sub>2</sub>                                 | 75              | None    |                     | 4          | 21            | 24           |
| 2     | $Co(tfa)_2$                                          | 50              | None    |                     | 8          | 55            | 0            |
| 3     | Co(acac)2c)                                          | 50              | None    |                     | 1          | 29            | 0            |
| 4     | $\operatorname{Co}(\operatorname{modp})_{2}^{\sim}d$ | 50              | None    |                     | 0.5        | 62            | 0            |
| 5     | $Co(modp)_2$                                         | 50              | t-BuOOH | (0.5)               | 0.5        | 64            | 0            |
| 6     | $Co(modp)_2$                                         | 50              | t-Bu00H | (1.0)               | 0.5        | 73            | 0            |
| 7     | Co(modp)2                                            | 50              | CHP     | (1.0) <sup>e)</sup> | 0.5        | 71            | 0            |

a) Reaction conditions; 5-hydroxy-5-phenyl-1-pentene 2.0

mmol, Co(II) complex 0.4 mmol, solvent (2-propanol) 20

- ml,  $MS4A^{6}$ ) 1 g, 1 atm.  $O_2$ . b) Determined by GC.
- c) Co(acac)2; bis(acetylacetonato)cobalt(II).
- d) Co(modp)<sub>2</sub>; bis(1-morpholinocarbamoyl-4,4-dimethyl-1,3-pentanedionato)cobalt(II).<sup>7)</sup> e) CHP; cumene hydroperoxide.
- f) In all cases, trans selectivities of 4b and 5b are 99%.

$$Co(\sqrt{N})_2$$

Co(modp)2

It was found then that the yield of 4b is depended on the reaction temperature. As shown in Table 1, when the reaction was carried out at 50 °C by using  $Co(tfa)_2$  as a catalyst, the yield of desired product 4b increased to 55% without accompanying 5b (Entry 2). By the use of  $Co(acac)_2$  as a catalyst, however, the cyclization reaction afforded the product 4b only in 29% yield (Entry 3). The cyclization of 1b with 0a was effectively promoted by  $Co(modp)_2$  to yield 4b in 62% (Entry 4).

Further, it was found that hydroperoxides are effective to improve the yield of <u>4b</u>. As shown in Entries 6 and 7, by addition of an equimolar amount of t-butyl hydroperoxide or cumene hydroperoxide, the yield of <u>4b</u> increased to 71~73%.

Thus, the above mentioned procedure was successfully applied to the stereoselective preparation of trans-2-hydroxymethyltetrahydrofurans from several 5-hydroxy-1-alkenes (see Table 2). And it should be pointed out that all the products are obtained with extremely high trans selectivities.

A mechanism of the formation of trans-2-hydroxymethyltetrahydrofuran is assumed as follows; initially, by the reaction of 5-hydroxy-1-alkene ( $\underline{1}$ ) with Co complex and  $0_2$ , a radical intermediate ( $\underline{2}$ ) which interacts to Co complex in the coordination sphere<sup>8</sup>) is formed.

Table 2. Preparation of Various 2-Hydroxymethyltetrahydrofuransa)

| Entry | Substrate | Product <sup>b</sup> ) | Yield <sup>c)</sup> | Trans sel.d) |  |
|-------|-----------|------------------------|---------------------|--------------|--|
|       |           |                        | /%                  | /%           |  |
| 1     | OH        | О ОН                   | 73                  | 99           |  |
| 2     | CH3O OH   | CH <sub>3</sub> O O OH | 69                  | 99           |  |
| 3     | CI        | CI O OH                | 60                  | 99           |  |
| 4     | S) OH     | ОН                     | 79                  | 99           |  |
| 5     | OH OH     | OH OH                  | 62                  | 99           |  |
| 6     | OH OH     | OH OH                  | 69                  | 97           |  |
| 7     | CH3 OH    | CH <sub>3</sub> OH     | 53                  | 99           |  |
| 8     | OH OH     | <b>Д</b> О,ОН          | 55                  | >99          |  |

a) Reaction conditions; substrate 2.0 mmol,  $Co(modp)_2$  0.4 mmol, 2-propanol 20 ml, t-butyl hydroperoxide 2.0 mmol, Molecular Sieves 4A 1.0 g, 1 atm.  $O_2$ , 50 °C, 0.5 h. b) All products gave satisfactory <sup>1</sup>H-NMR and IR spectra. c) Isolated yield.

70 Chemistry Letters, 1990

Then,  $\underline{2}$  is converted to a cyclized intermediate ( $\underline{3}$ ) with trans relation between 2 and 5 positions located substituents, R- and  $-\text{CH}_2\text{CoL}_2$ , because of less steric repulsion between substituent R- and  $\text{CoL}_2$  in the step of radical cyclization. 9) Insertion of  $0_2$  into Co-C bond of  $\underline{2}$  yields cobalt peroxide 10) which is in turn changed to 2-hydroxymethyltetrahydrofuran ( $\underline{4}$ ) by reductive cleavage with 2-propanol as depicted in Scheme 2. On the other hand, 2-methyltetrahydrofuran ( $\underline{5}$ ) is formed by the abstraction of a hydrogen atom from the solvent (2-propanol).

The role of hydroperoxide is not yet made clear. However, it is confirmed that hydroperoxide participates before the cyclization step, based on the results that addition of hydroperoxide has no influence on stereoselectivity of  $\underline{4}$ . Accordingly, it is reasonable to assume that hydroperoxide accelerates the generation of the radical intermediate ( $\underline{2}$ ).

A typical procedure is described for the preparation of 2-hydroxymethyl-5-phenyltetrahydrofuran (4b); to a 2-propanol solution (20 ml) of 5-hydroxy-5-phenyl-1-pentene (324 mg, 2.0 mmol) was added  $\text{Co}(\text{modp})_2$  (220 mg, 0.4 mmol), MS4A (activated powder 1.0 g) and t-butyl hydroperoxide (180 mg, 2.0 mmol). After being stirred for 0.5 h at 50 °C under  $0_2$  atmosphere, MS4A was removed by filtration. Then saturated sodium thiosulfate solution (5 ml) was added to the reaction mixture to decompose residual peroxides completely and the mixture was stirred for another 1 h at room temperature. After usual work-up, 4b (260 mg, 73%) was obtained. The trans selectivity of 4b was determined to be 99% by the GC analysis.

## References

- 1) M. M. Cook and C. Djerassi, J. Am. Chem. Soc., 95, 3678 (1973); M. Lj. Mihailovic and D. Marinkovic, Croatica Chemica Acta, 59, 109 (1986).
- 2) M.-C. Benhamou, G. Etemad-Morghabam, V. Speziale, and A. Lattes, J. Heterocyclic Chem., 15, 1313 (1978).
- 3) J. L. Jernow, D. Gray, and W.D. Closson, J. Org. Chem., <u>36</u>, 3511 (1971).
- 4) H. C. Brown and G. J. Lynch, J. Org. Chem., 46, 930 (1981).
- 5) T. Mukaiyama, S. Isayama, S. Inoki, K. Kato, T. Yamada, and T. Takai, Chem Lett., 1989, 449; S. Inoki, K. kato, T. Takai, S. Isayama, T. Yamada, and T. Mukaiyama, ibid., 1989, 515.
- 6) We have already reported that MS4A is effective to improve the yield in the oxidation of secondary alcohol by using Co(II) complexes and molecular oxygen; T. Yamada and T. Mukaiyama, Chem. Lett., 1989, 519.
- 7) S. Isayama and T. Mukaiyama, Chem. Lett., 1989, 573.
- 8) For example; H. Matsumoto, T. Nakano, and Y. Nagai, Tetrahedron Lett., 1973, 5147.
- 9) Cyclization reaction of 4-pentene-1-ol via alkoxy radical was reported; A. Clerici, F. Minisci, and J-M. Surzur, Tetrahedron Lett., 1978, 1149.
- 10) Insert of  $0_2$  into Co-C bond is well known; for example, V. F. Patel and G. Pattenden, Tetrahedron Lett., 28, 1451 (1987).

(Received September 29, 1989)